Elementary Statistics	Name:
Extra Credit 4	Due Dates:

Your solutions must be consistent with class notes & resources.

Be Neat, Organized, and No Work ⇔ No Points

Submit as one file, portrait style, pages in order, and same format.

1. A mathematics assessment test was given to students in two local high schools. The table below shows the results from independent samples taken from these two high schools.

High School A					Н	ligh		hoo	lВ			
67 69 84	86 75 71	70 98		72 80				70	73 74 72		91 85	100 73

Table 1: Mathematics Assessment Results

(a) (6 points) Correctly choose which high school becomes sample 1 such that $S_1 > S_2$, then complete the following table. Round your answers to one-decimal place.

Sample 1(High School)	Sample 2(High School)
$n_1 =$	$n_2 =$
$\bar{x}_1 =$	$\bar{x}_2 =$
$s_1 =$	$s_2 =$

Table 2: Summarized Math Results

(b)	(3 points) Clearly state H_0 , H_1 , identify the type of test.
	$H_0:$
	$H_1:$
(c)	(2 points) Find the computed test statistic and the P-value. Name the TI command used.
	C.T.S. : P-Value :
(d)	(3 points) Based on your conclusion, when working with two population means would you consider YES or NO option for pooling? Explain your reasoning.
	(d)
(e)	(3 points) Construct a 95% confidence interval for the difference between two population means $\mu_1 - \mu_2$ of mathematics assessment results for all students using data in table 2. Round your answers to one-decimal place. Name the TI command used.
(f)	(e) (2 points) Compute the margin of error.
	(f)
	Use $\alpha=0.02$ by referring to the data in table 2 to test a claim that the mean mathematics assessment results of all students in high school A is less than the mean mathematics assessment results of all students in high school B.
(g)	(3 points) Clearly state H_0 , H_1 , identify the claim and type of test.
	H_0 :
	H_1 :

Test whether two population standard deviations between the two high schools

are equal or not at $\alpha = 0.02$ by using the data in table 2.

(h)	(3 points)	Find all related	critical values,	draw the d	listribution,	clearly	mark
	and shade	the critical region	on(s).				

(i) (2 points) Find the computed test statistic and the P-value.

C.T.S. :	P-Value :
C.1.D	i value:

(j) (2 points) Use non-statistical terminology to state your final conclusion about the claim.

2. The table below shows the percentage of respondents taken from independent samples of two different hospitals in southern California, which reported their nurses always communicated well.

Hospital A							Ho	spit	al B				
50	66	70	70	72	73	63	72	75	78	73	68	71	75
69	65	68	65	90			80	77	75	73	70	74	85

Table 3: Communication Skills By Nurses

(a) (3 points) Correctly choose which hospital becomes sample 1 such that $S_1 > S_2$, then complete the following table. Round your answers to whole numbers.

Sample 1(Hospital)	Sample 2(Hospital)
$n_1 =$	$n_2 =$
$\bar{x}_1 =$	$\bar{x}_2 =$
$s_1 =$	$s_2 =$

Table 4: Summarized Hospital Percentages

Test whether two population standard deviations between the two hospitals are equal or not at $\alpha=0.02$ by using the data in table 4.

(b)	(2 points) Clearly state H_0 , H_1 , identify the type of test.	
	H_0 :	
	$H_1:$	
(c)	(3 points) Find the computed test statistic and the P-value. Name the command used.	ΓI
	C.T.S. : P-Value :	
(d)	(3 points) Based on your conclusion, when working with two population measured would you consider YES or NO option for pooling?	ıns
(e)	(d)(3 points) Construct a 95% confidence interval for the difference between two	
(0)	population means $\mu_1 - \mu_2$ of communication skills of all nurses using data table 4.	
	(e)	_
	Use $\alpha=0.02$ by using the data in table 4 to test a claim that the mean percentage of communication skills of all nurses in hospital A is less than the mean percentage of communication skills of all nurses in hospital B.	
(f)	(2 points) Clearly state H_0 , H_1 , identify the claim and type of test.	
	H_0 :	
	$H_1:$	
(g)	(3 points) Find the computed test statistic and the P-value.	
	C.T.S. : P-Value :	•
(h)	(2 points) Use the p – value method and non-statistical terminology to state your final conclusion about the claim.	te
	(h)	